Hydrogen Production Using “Direct-Starting” Biocathode Microbial Electrolysis Cell and the Analysis of Microbial Communities
نویسندگان
چکیده
منابع مشابه
Hydrogen production with a microbial biocathode.
This paper, for the first time, describes the development of a microbial biocathode for hydrogen production that is based on a naturally selected mixed culture of electrochemically active micro-organisms. This is achieved through a three-phase biocathode startup procedure that effectively turned an acetate- and hydrogen-oxidizing bioanode into a hydrogen-producing biocathode by reversing the po...
متن کاملHydrogen gas production in a microbial electrolysis cell by electrohydrogenesis
Electrohydrogenesis is a bio-electrochemical process where organic material is microbially oxidized to protons and electrons, which in turn are reduced to form hydrogen gas (H2). The reactor in which these reactions occur is termed a microbial electrolysis cell (MEC). The microorganisms that colonize the anode are known as electricigens and behave as biological catalysts, significantly reducing...
متن کاملThe significance of key operational variables to the enhancement of hydrogen production in a single-chamber microbial electrolysis cell (MEC)
Microbial electrolysis cell (MEC) is one of the promising and cutting-edge technologies for generating hydrogen from wastewater through biodegradation of organic waste by exoelectrogenic microbes. In the MECs, the operational parameters, such as applied voltage (Eap), anode surface area, anode-cathode distance, and N2/CO2 volume ratio have a significant impact on the hydrogen yield and producti...
متن کاملAnode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters.
Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H(2) gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were ...
متن کاملHydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells.
Microorganisms can produce hydrogen gas (H(2)) at high rates by fermentation of carbohydrates, but not from proteins. However, it is possible to produce H(2) at high rates and yields from proteins by electrohydrogenesis in microbial electrolysis cells (MECs). Hydrogen gas was generated using bovine serum albumin (BSA, 700 mg/L) in a single-chamber MEC at a rate of Q=0.42+/-0.07 m(3)/m(3)/day an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Metallurgica Sinica (English Letters)
سال: 2018
ISSN: 1006-7191,2194-1289
DOI: 10.1007/s40195-018-0785-6